Comparison of Gelatin and Collagen Scaffolds for Fibroblast Cell Culture
نویسندگان
چکیده
Gelatin and collagen were used to produce the scaffold for fibroblast cell culture. The properties of scaffolds obtained from type A and type B gelatin were compared to scaffold obtained from collagen, which is widely used in skin substitute. Porous scaffolds were prepared by freeze drying and dehydrothermal (DHT) crosslinking method. DHT treatment time was performed at 24 and 48 h and the degree of crosslinking was determined by 2,4,6-trinitrobenzene sulphonic acid (TNBS). The morphology of scaffolds was investigated by scanning electron microscopy (SEM). The compressive modulus and swelling ratio of the scaffolds were reported. To confirm the applicability of the scaffolds as a skin substitute, in vitro cell adhesion and cell proliferation tests were employed in this study. The gelatin scaffolds showed comparable properties, especially cell proliferation, to those of collagen scaffolds but the rapid degradation rate of gelatin was the limiting factor of using gelatin in wound healing. However, gelatin scaffolds could be modified to reduce the degradation rate and used substitute collagen scaffold to reduce the cost of materials for scaffold fabrication.
منابع مشابه
Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering
Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Scaffolds Crosslinked by Glutaraldehyde for Bone Tissue Engineering
In this study, to mimic the mineral and organic components of natural bone, hydroxyapatite[HA] and gelatin[GEL] composite scaffolds were prepared using the solvent-casting method combined with a freeze drying process. Glutaraldehyde[GA] was used as a cross linking agent and sodium bisulfite was used as an excess GA discharger. Using this technique, it is possible to produce scaffolds with mecha...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملWharton’s Jelly Mesenchymal Stem Cell: Various Protocols for Isolation and Differentiation of Hepatocyte-Like Cells; Narrative Review
There are several differentiation methods for mesenchymal stem cells (MSCs) into hepatocyte-like cell. Investigators reported various hepatic differentiation protocols such as modifying culturing conditions or using various growth factors/cytokines. In this literature review, we compared different MSCs extraction and isolation protocols from Wharton’s jelly (WJ) and explored various MSCs differ...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کامل